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1.1 INTRODUCTION

An important component of parallel scientific computing is the assignment of
work to processors. This assignment problem is also known as partitioning or
mapping. The goal of the assignment problem is to find a task-to-processor
mapping that will minimize the total execution time. Although efficient opti-
mal solutions for certain restricted variations, such as chain- or tree-structured
programs exist [21], the general problem is NP-hard [28]. We consider this
general version where any task can potentially be assigned to any processor.
In the literature, the task-to-processor assignment problem is usually solved
by a two-step approach: first tasks are partitioned into load-balanced clusters of
tasks, then these clusters are mapped to processors. In the partitioning step,
a common goal is to minimize the interprocessor communication while main-
taining a computational load balance among processors. Partitioning occurs
at the start of a computation (static partitioning), but often, reassignment of
work is done during a computation (dynamic partitioning or repartitioning)

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94AL85000.
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4 HYPERGRAPH-BASED DYNAMIC PARTITIONING

as the work distribution changes over the course of the computation. Repar-
titioning usually includes both partitioning and mapping. While distinction
between partitioning, load balancing and mapping can be made as described,
throughout this chapter we will use the terms interchangeably to refer the
assignment problem. We will assume that the mapping step of the two-step
approach either is trivial, or inherent in the partitioning approach.

Dynamic partitioning is an important feature in parallel adaptive compu-
tations [9]. Even if the original problem is well balanced, e.g., by using graph
or hypergraph partitioning, the computation may become unbalanced over
time due to dynamic changes. A classic example is simulation based on adap-
tive mesh refinement, in which the computational mesh changes between time
steps. The difference is often small, but over time, the cumulative change
in the mesh becomes significant. Therefore dynamic load balancing may be
required periodically to re-balance the application, that is, move data among
processors to improve the load balance.

Dynamic load balancing or repartitioning is a well studied problem [9, 10,
13, 15, 19, 31, 32, 34, 35, 39, 37, 41, 43, 44] that has multiple objectives with
complicated trade-offs among them:

1. good load balance in the new data distribution;

2. low communication cost within the application (as determined by the
new distribution);

3. low data migration cost to move data from the old to the new distribu-
tion; and

4. short repartitioning time.

Total execution time is commonly modeled [26, 34] as follows to account for
these objectives:

ttot = α(tcomp + tcomm) + tmig + trepart,

Here, tcomp and tcomm denote computation and communication times within
the application, respectively; tmig is the data migration time and trepart is
the repartitioning time. The parameter α indicates how many iterations
(e.g., time steps in a simulation) the application performs between every
load-balance operation. Since the goal of load balancing is to minimize the
communication cost while maintaining well-balanced computational loads, we
can safely assume that computation will be balanced and hence drop tcomp

term. Furthermore, trepart is typically much smaller than αtcomp for most
applications thanks to fast state-of-the-art repartitioners. Thus, the objective
reduces to minimize αtcomm + tmig.

Much of the early work in dynamic load balancing focused on diffusive
methods [9, 19, 20, 32, 33, 41, 43], where overloaded processors give work to
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neighboring processors that have lower than average loads. Another approach,
scratch-remap, partitions the new problem from scratch without accounting
for existing partition assignments, and then tries to remap partitions to min-
imize the migration cost [35].

Diffusive schemes are fast and have low migration cost, but may incur
high communication volume. Scratch-remap schemes achieve low commu-
nication volume, but are slow and often have high migration cost. Dynamic
load balancing schemes should be designed such that the compromise between
these extreme choices can be tweaked by the application developer. In [34],
Schloegel et al. introduced a parallel adaptive repartitioning scheme based on
the multilevel graph partitioning paradigm. In their work, relative importance
of migration time against communication time is set using a user-given pa-
rameter, and it is taken into account in the refinement phase of the multilevel
scheme. Aykanat et al. [2] proposed a graph-based repartitioning model, RM
model, where the original computational graph is augmented with new ver-
tices and edges to account for migration cost. Then the graph is repartitioned
using graph partitioning with fixed vertices using a serial tool RM-METIS
that they developed by modifying the graph partitioning tool METIS [22].
Although these approaches attempt to minimize both communication and
migration costs, their applicability is limited to problems with symmetric, bi-
directional dependencies. In a concurrent work, Cambazoglu and Aykanat [5]
have recently proposed a hypergraph-partitioning-based model for the adap-
tive screen partitioning problem in the context of image-space-parallel direct
volume rendering of unstructured grids. However, in that application, com-
munication occurs only for data replication (migration); hence, their model
accounts only for migration cost.

In the recent work, Catalyurek et al. [6] proposed a generalized hypergraph
model for repartitioning. As will be described in more detail in Section 1.3,
the new hypergraph model minimizes the sum of the total communication
volume in the application plus the migration cost to move data. Hypergraphs
accurately model the actual communication cost and have greater applicabil-
ity than graph models (e.g., hypergraphs can represent non-symmetric and/or
non-square systems) [7]. Furthermore, the natural combined representation of
the two costs in a single hypergraph is more suitable to successful multilevel
partitioning schemes than graph-based approaches (see Section 1.2 for details).
The new model can be more effectively realized with a parallel repartition-
ing tool. However, it necessitates hypergraph partitioning with fixed vertices.
Although serial hypergraph partitioners with fixed-vertex partitioning exist
(PaToH [8]), to the best of our knowledge Zoltan [3] is the first parallel hy-
pergraph partitioner with this feature.

The remainder of this chapter is organized as follows. In Section 1.2, we
present some preliminaries for hypergraph partitioning and multilevel parti-
tioning. In Section 1.3, we discuss three approaches for dynamic load balanc-
ing using hypergraphs. The parallel repartitioning tool developed within the
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Zoltan [45] framework is presented in Section 1.4. Section 1.5 includes empir-
ical results of the hypergraph-based repartitioning approaches compared to
graph-based repartitioning approaches. Finally, we give our conclusions and
suggest future work.

1.2 PRELIMINARIES

In this section we present a brief description of hypergraph partitioning with
fixed vertices as well as the multilevel partitioning paradigm.

1.2.1 Hypergraph Partitioning with Fixed Vertices

Hypergraphs can be viewed as a generalization of graphs where each edge
is not restricted to connect only two vertices. Formally, a hypergraph H =
(V,N) is defined by a set of vertices V and a set of nets (hyperedges) N
among those vertices, where each net nj ∈ N is a non-empty subset of vertices.
Weights (wi) and costs (cj) can be assigned to the vertices (vi ∈ V ) and nets
(nj ∈ N) of the hypergraph, respectively. P = {V1, V2, . . . , Vk} is called a
k-way partition of H if each part is a non-empty, pairwise-disjoint subset of
V and the union of all Vp, p = 1, 2, . . . , k, is equal to V . A partition is said to
be balanced if

Wp ≤ Wavg(1 + ε) for p = 1, 2, . . . , k, (1.1)

where part weight Wp =
∑

vi∈Vp
wi is the sum of the vertex weights of

part Vp, Wavg =
(∑

vi∈V wi

)
/k is the weight of each part under perfect load

balance, and ε is a predetermined maximum imbalance allowed.
In a partition, a net that has at least one vertex in a part is said to connect

to that part. The connectivity λj(H,P ) of a net nj denotes the number of
parts connected by nj for a given partition P of H. A net nj is said to be cut
if it connects more than one part (i.e., λj > 1).

There are various ways of defining the cost of a partition P of hypergraph
H [30], cost(H,P ). The relevant one for our context is known as connectivity-1
(or k-1) cost, defined as follows:

cost(H,P ) =
∑

nj∈N

cj(λj − 1) (1.2)

The standard hypergraph partitioning problem [30] can then be defined
as the task of dividing a hypergraph into k parts such that the cost (1.2) is
minimized while the balance criterion (1.1) is maintained.

The problem of hypergraph partitioning with fixed vertices is a more con-
strained version of the standard hypergraph partitioning problem. In this
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problem, in addition to the input hypergraph H and the number of parts k, a
fixed-part function f(v) is also given as an input to the problem. A vertex is
said to be free (denoted by f(v) = −1) if it is allowed to be in any partition
in the solution P , and it is said to be fixed in part q (f(v) = q for 1 ≤ q ≤ k)
if it is required to be in Vq in the final solution P . If a significant percent of
the vertices are fixed, it is expected that partitioning problem becomes easier.
Clearly, in the extreme case where all the vertices are fixed (i.e., f(v) 6= −1 for
all v ∈ V ), the solution is trivial. Empirical studies of Alpert et al. [1] verify
that the presence of fixed vertices can make a partitioning instance consid-
erably easier. However, to the best of our knowledge, there is no theoretical
work on the complexity of the problem. Experience shows that if only a very
small fraction of vertices are fixed, the problem is almost as “hard” as the
standard hypergraph partitioning problem.

1.2.2 Multilevel Partitioning Paradigm

Although graph and hypergraph partitioning are NP-hard [16, 30], algorithms
based on multilevel paradigms [4, 18, 24] have been shown to quickly compute
good partitions in practice for both graphs [17, 23, 42] and hypergraphs [8, 25].
Recently the multilevel partitioning paradigm has been adopted by parallel
graph [42, 26] and hypergraph [12, 38] partitioners.

In multilevel partitioning, instead of directly partitioning the original large
hypergraph (graph), a hierarchy of smaller hypergraphs (graphs) that approx-
imate the original is generated during the coarsening phase. The smallest
hypergraph (graph) is partitioned in the coarse partitioning phase. In the
refinement phase, the coarse partition is projected back to the larger hyper-
graphs (graphs) in the hierarchy and improved using a local optimization
method.

Multilevel hypergraph partitioning algorithms can be adapted to handle
fixed vertices. In this chapter, we describe a technique for parallel multilevel
hypergraph partitioning with fixed vertices [6]. The implementation is based
on the parallel hypergraph partitioner in Zoltan [12].

1.3 HYPERGRAPH-BASED REPARTITIONING METHODS

A typical adaptive application, e.g. time-stepping numerical methods with
adaptive meshes, consists of a sequence of iterations. At each iteration the
structure of the problem (computation) may change slightly, usually insignif-
icantly. After a certain number of iterations, these changes accumulate and
the workload becomes unevenly distributed among the processors. In order to
restore the balance, a load balancer is invoked and some of the data are moved
(migrated) to establish a new partitioning. Then the computation resumes
and this process is repeated until the application is finished.
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In dynamic load balancing (repartitioning), communication cost and mi-
gration cost are the two main objectives to be minimized. These objectives are
typically conflicting, posing a challenge in designing an efficient load balanc-
ing algorithm. The majority of the previous work is based on simplifying the
problem by setting either of these objectives as a primary one and the other
as a secondary, thereby impeding any trade-off between them. Furthermore,
none of the previous methods are designed for or applied to hypergraphs. In
this section, we first discuss two naive approaches to achieve dynamic load
balancing using hypergraph partitioning, and then introduce a new reparti-
tioning hypergraph model that accurately represents the costs associated with
the dynamic load balancing problem.

1.3.1 Scratch-Remap Based Repartitioning

One of the trivial approaches for dynamic load balancing is to repartition
the modified hypergraph that models the application from scratch after cer-
tain number of iterations. Previous partition assignments are ignored during
partitioning. However, they are used in a post-processing step that reorders
partitions to maximize the overlap between new and previous assignments
and, thus, reduce the migration cost.

1.3.2 Refinement Based Repartitioning

Second naive approach is just a simple application of successful move or
swap based refinement algorithms; such as Kernighan-Lin [29], Schweikert-
Kernighan [36] or Fiduccia-Mattheyses [14]. In this approach, vertices initially
preserve their previous assignments and new vertices are assigned to existing
parts via a simple, possibly a random, partitioner. Then, a single refinement
is applied to minimize the communication cost. Since vertices are allowed to
change partitions only during the refinement phase, migration cost is some-
what constrained. However, constrained vertex movement may lead to lower
cut quality and, hence, larger communication cost. This approach may be
extended to the multilevel partitioning framework to improve cut quality (al-
beit with increased partitioning time). However, we do not present multilevel
refinement results here, as our new model below incorporates both coarsening
and refinement in a more accurate way to achieve repartitioning.

1.3.3 A New Repartitioning Hypergraph Model

Our work is based on the composite objective function defined in Section 1.1
to allow trade-off between communication and migration costs. We present a
novel hypergraph model to represent the repartitioning problem. Hypergraph
partitioning is then directly applied to optimize the composite objective.
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Fig. 1.1 (left) A sample hypergraph for epoch j − 1, (right) repartitioning hyper-
graph for epoch j with a sample partitioning.

We call the period between two subsequent load balancing operations an
epoch of the application. An epoch consists of one or more computation
iterations. The computational structure and dependencies of an epoch can be
modeled using a computational hypergraph [7]. Since all computations in the
application are of the same type but the structure is different across epochs,
a different hypergraph is needed to represent each epoch. We denote the
hypergraph that models the jth epoch of the application by Hj = (V j , Ej)
and the number of iterations in that epoch by αj .

Load balancing for the first epoch is achieved by partitioning H1 using a
static partitioner. For the remaining epochs, data redistribution cost between
the previous and current epochs should also be included during load balancing.
Total cost should be the sum of the communication cost for Hj with the
new data distribution, scaled by αj , and the migration cost for moving data
between the distributions in epoch j − 1 and j.

Our new repartitioning hypergraph model appropriately captures both ap-
plication communication and data migration costs associated with an epoch.
To model migration costs in epoch j, we construct a repartitioning hyper-
graph H̄j = (V̄ j , Ēj) by augmenting Hj with k new vertices and |V j | new
hyperedges using the following procedure:

• Scale each net’s cost (representing communication) in Ej by αj while
keeping the vertex weights intact.

• Add a new partition vertex ui with zero weight for each partition i, and
fix those vertices in respective parts, i.e. f(ui) = i for i = 1, 2, . . . , k.
Hence V̄ j becomes V j ∪ {ui|i = 1, 2, . . . , k}.

• For each vertex v ∈ V j , add a migration net between v and ui if v is
assigned to partition i at the beginning of epoch j. Set the migration
net’s cost to the size of the data associated with v, since this migration
net represents the cost of moving vertex v to a different partition.

Figure 1.1 illustrates a sample hypergraph Hj−1 for epoch j− 1 (left), and
a repartitioning hypergraph H̄j for epoch j (right). A nice feature of our
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model is that no distinction is required between communication and migra-
tion vertices as well as nets. However, for clarity in this figure, we represent
computation vertices with circles and partition vertices with hexagons. Sim-
ilarly, nets representing communication during computation are represented
with squares, and migration nets representing data to be migrated due to
changing vertex assignments are represented with diamonds. In this example,
there are nine unit weight vertices partitioned into three parts with a perfect
balance at epoch j − 1. Three cut nets represent data that need to be com-
municated among the parts. Two of these nets have connectivity of two and
one has three. Assuming unit cost for each net, total communication volume
is four (Equation 1.2). In other words, each iteration of epoch j − 1 incurs a
communication cost of four.

The computational structure changes in epoch j as displayed in Figure 1.1
(right). In Hj , new vertices a and b are added while vertices 3 and 5 are
deleted. To construct the repartitioning hypergraph H̄j from Hj , three par-
tition vertices u1, u2 and u3 are added and net weights in Hj are scaled by
αj . Then, each of the seven computation vertices inherited from Hj−1 is
connected to the partition vertex associated with the partition to which the
computation vertex was assigned in epoch j − 1, via a migration net.

Once the new repartitioning hypergraph H̄j that encodes both communi-
cation and migration costs is obtained, the repartitioning problem reduces to
hypergraph partitioning with fixed vertices. Here, the constraint is that vertex
ui must be assigned, or fixed, to partition i.

Let P = {V1, V2, . . . , Vk} be a valid partitioning for this problem. Assume
that a vertex v is assigned to partition Vp in epoch j − 1 and Vq in epoch j,
where p 6= q. Then, the migration net between v and uq that represents the
migration cost of vertex v’s data is cut (note that uq is fixed in Vq). Therefore,
cost of moving vertex v from partition Vp to Vq is appropriately included in
the total cost. If a net that represents a communication during computation
phase is cut, cost incurred by communicating the associated data in all αj

iterations in epoch j is also accounted for since the net’s weight has already
been scaled by αj . Hence our repartitioning hypergraph accurately models
the sum of communication during computation phase plus migration cost due
to moved data.

In the example given in Figure 1.1, assume that epoch j consists of five
iterations, i.e. αj = 5. Then, each of the unit weight communication nets
incurs a communication cost of five in epoch j. Further, assume that the size
of each vertex is three, i.e. moving a vertex across partitions adds three units
to total communication volume. In the repartitioning hypergraph H̄j , this
data movement is represented by migration nets of weight three connecting
each vertex to the fixed vertex in its partition. In this example, after applying
hypergraph partitioning on H̄j , vertices 2 and 8 are assigned to partitions V3

and V2, respectively. The cost associated with migration of these vertices
is captured by associated migration nets being cut with connectivity of two.
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Total migration cost is then 2 × 3 × (2 − 1) = 6. In this partitioning, two
communication nets ({1, 2, a} and {7, 8}) are also cut with connectivity of two,
resulting in a total application communication volume of 2× 5× (2− 1) = 10.
Thus, the total cost of epoch j is 16.

1.4 PARALLEL REPARTITIONING TOOL

Effective application of the model presented in the previous section for dy-
namic repartitioning necessitates a parallel hypergraph partitioning with fixed
vertices. As described in Section 1.2, hypergraph partitioning is NP-hard but
can be effectively solved in practice using multilevel heuristic approaches.
Multilevel hypergraph partitioning algorithms can be adapted to handle fixed
vertices [8], and here we describe a technique for parallel multilevel hypergraph
partitioning with fixed vertices [6] that is based on the parallel hypergraph
partitioner in Zoltan [12].

The main idea of partitioning with fixed vertices is to make sure that
the fixed partition constraint of each vertex is maintained during phases of
multilevel partitioning. We will first describe how this works assuming that
we are using a direct k-way multilevel paradigm. Later we will briefly discuss
how this is handled when a recursive bisection approach is used.

1.4.1 Coarsening Phase

The goal of the coarsening phase is to approximate the original hypergraph
via a succession of smaller hypergraphs. This process terminates when the
coarse hypergraph is small enough (e.g., it has less than 2k vertices) or when
the last coarsening step fails to reduce the hypergraph size by a specified
amount (typically 10%). In this work we employ a method based on merging
similar pairs of vertices. We adopted a method called inner-product match-
ing (IPM), that was initially developed in PaToH [7] (where it was called
heavy-connectivity matching), and later adopted by hMETIS [27] and Mon-
driaan [40]. The greedy first-choice method is used to match pairs of vertices.

Conceptually, the parallel implementation of IPM works in rounds where
in each round, each processor selects a subset of vertices as candidate vertices
that will be matched in that round. The candidate vertices are sent to all
processors. Then all processors concurrently contribute the computation of
their best match for those candidates. Matching is finalized by selecting a
global best match for each candidate. Zoltan uses a two-dimensional data
distribution; hence, the actual inner workings of IPM are somewhat compli-
cated. Since a detailed description is not needed to explain the extension
for handling fixed vertices, we have omitted those details. Readers may refer
to [12] for more details.
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During the coarsening, we do not allow two vertices to match if they are
fixed to different partitions. Thus, there are three possible scenarios in which
vertices match: 1) two matched vertices are fixed to the same partition, 2) only
one of the matched vertices is fixed to a partition, or 3) both are not fixed to
any partitions (free vertices). For cases 1 and 2, the resulting coarse vertex
is fixed to the part in which either of its constituent vertices was fixed; for
case 3, the resulting coarse vertex is free. By constraining matching in this
way, we ensure that the fixed vertex information appropriately propagates
to coarser hypergraphs, and coarser hypergraphs truly approximate the finer
hypergraphs and their constraints.

In order to efficiently implement this restriction, we allow each processor to
concurrently compute all match scores of possible matches, including infeasible
ones (due to the matching constraint), but at the end when the best local
match for each candidate is selected we select a match that obeys the matching
constraint. We have observed that this scheme adds only an insignificant
overhead to the unrestricted IPM matching.

1.4.2 Coarse Partitioning Phase

The goal of this phase is to construct an initial solution using the coarsest
hypergraph available. When coarsening stops, if the coarsest hypergraph is
small enough (i.e., if coarsening did not terminate early due to unsuccess-
ful coarsening) we replicate it on every processor and each processor runs a
randomized greedy hypergraph growing algorithm to compute a different par-
titioning into k partitions. If the coarsest hypergraph is not small enough,
then each processor contributes computation of an initial partitioning using
a localized version of the greedy hypergraph algorithm. In either case, we
ensure that fixed coarse vertices are assigned to their respective partitions.

1.4.3 Refinement Phase

The refinement phase takes a partition assignment, projects it to finer hyper-
graphs and improves it using a local optimization method. Our code is based
on a localized version of the successful Fiduccia–Mattheyses [14] method, as
described in [12]. The algorithm performs multiple pass-pairs and in each
pass, each vertex is considered to move to another part to reduce cut cost.
As in coarse partitioning, the modification to handle fixed vertices is quite
straight-forward. We do not allow fixed vertices to be moved out of their
fixed partition.

1.4.4 Handling Fixed Vertices in Recursive Bisection

Achieving k-way partitioning via recursive bisection (repeated subdivision of
parts into two parts) can be extended easily to accommodate fixed vertices.
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Name |V | |E| vertex degree Application Area
min max avg

xyce680s 682,712 823,232 1 209 2.4 VLSI design
2DLipid 4,368 2,793,988 396 1,984 1,279.3 Polymer DFT
auto 448,695 3,314,611 4 37 14.8 Structural analysis
apoa1-10 92,224 17,100,850 54 503 370.9 Molecular dynamics
cage14 1,505,785 13,565,176 3 41 18.0 DNA electrophoresis

Table 1.1 Properties of the test datasets; |V | and |E| are the numbers of
vertices and graph edges, respectively.

For example, in the first bisection of recursive bisection, the fixed vertex infor-
mation of each vertex can be updated as follows: vertices that are originally
fixed to partitions 1 ≤ p ≤ k/2, are fixed to partition 1, and vertices originally
fixed to partitions k/2 < p ≤ k are fixed to partition 2. The partitioning al-
gorithm with fixed vertices then can be executed without any modifications.
This scheme is recursively applied in each bisection. Zoltan uses this recursive
bisection approach.

1.5 EXPERIMENTAL RESULTS

Our repartitioning code is based on the hypergraph partitioner in the Zoltan
toolkit [11, 12], which is freely available from the Zoltan web site2. The code
is written in C and uses MPI for communication. We ran our tests on a Linux
cluster that has 64 dual-processor Opteron 250 nodes interconnected via an
Infiniband network.

Due to the difficulty of obtaining data from real-world simulations, we
present results from synthetic dynamic data. The base cases were obtained
from real applications, as shown in Table 1.1.

We used two different methods to generate synthetic data. The first method
represents biased random perturbations that change structure of the data. In
this method, we randomly select a certain fraction of vertices in the original
data and delete them along with the incident edges. At each iteration, we
delete a different subset of vertices from the original data. Therefore, we
simulate dynamically changing data that can both lose and gain vertices and
edges. The results presented in this section correspond to the case where
half of the partitions lose or gain 25% of the total number of vertices at each
iteration.

2http://www.cs.sandia.gov/Zoltan
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The second method we used to generate synthetic data simulates adap-
tive mesh refinement. Starting with the initial data, we randomly select a
certain fraction of the partitions at each iteration. Then, the sub-domain
corresponding to selected partitions performs a simulated mesh refinement,
where each vertex increases both its weight and its size by a constant factor.
In the results displayed in this section, 10% of the partitions are selected at
each iteration and the weight and size of each vertex in these partitions are
randomly increased to between 1.5 and 7.5 of their original value.

We tested several other configurations by varying the fraction of vertices
lost or gained and the factor that scales the size and weight of vertices. The
results we obtained in these experiments were similar to the ones presented
in this section.

We compare five different algorithms:

1. Z-repart: Our new method implemented within the Zoltan hypergraph
partitioner (Section 1.3.3).

2. Z-scratch: Zoltan hypergraph partitioning from scratch (Section 1.3.1).

3. Z-refine: Zoltan refinement-based hypergraph repartitioning (Section 1.3.2).

4. M-repart: ParMETIS graph repartitioning using the AdaptiveRepart op-
tion.

5. M-scratch: ParMETIS graph partitioning from scratch (Partkway).

We used ParMETIS version 3.1 in these experiments [26]. For the scratch
methods, we used a maximal matching heuristic in Zoltan to map partition
numbers to reduce migration cost. We do not expect the partition-from-
scratch methods to be competitive for dynamic problems, but include them
as a useful baseline.

In Figures 1.2 through 1.13, experimental results for total cost while varying
the number of processors and α are presented. In our experiments we varied
the number of processors (partitions) between 16 and 64, and α from 1 to
1000. (Our α corresponds to the ITR parameter in ParMETIS.) We report
the average results over a sequence of 20 trials for each experiment. For
each configuration, there are five bars representing total cost for Z-repart, M-
repart, Z-refine, Z-scratch and M-scratch, from left to right respectively. Total
cost in each bar is normalized by the corresponding total cost of Z-repart and
consists of two components: communication (bottom) and migration (top)
costs. First 10 figures, (Figures 1.2–1.11), displays total cost comparison of
the five methods, for each one of the five test cases, with perturbed data
structure and weights. Figures 1.12 and 1.13 display the average quality
results for those five test datasets.

The results show that in the majority of the test cases, our new hypergraph
repartitioning method Z-repart outperforms M-repart in terms of minimizing
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the total cost. Since minimizing the migration cost is a more deeply inte-
grated objective starting from coarsening, Z-repart trades off communication
cost better than M-repart to minimize the total cost. This result is more
clearly seen for small and medium α values where minimizing migration cost
is as important as minimizing the communication cost. For large α values, mi-
gration cost is less important relative to communication cost and the problem
essentially reduces to minimizing the communication cost alone. Therefore,
in such cases, Z-repart and M-repart behave similarly to partitioners using
scratch methods.

Similar observations can be made when comparing Z-repart against scratch-
remap based repartitioning methods; Z-scratch and M-scratch. Since the sole
objective in Z-scratch and M-scratch is to minimize communication cost, the
migration cost is extremely large, especially for small α. The total cost using
Z-scratch and M-scratch is comparable to Z-repart only when α is greater than
100. For larger values of α, the objective of minimizing the communication
cost dominates; however, Z-repart still performs as well as the scratch methods
to minimize the total cost.

Z-refine displays an opposite trend in total cost with increasing α. Due
to its constrained initial partitioning, Z-refine attempts to minimize commu-
nication volume with relatively fewer vertex movements. Therefore, the cut
quality of Z-refine is lower than other partitioners, resulting in a relatively
higher total cost for large α values. On the other hand, Z-refine produces
lower migration costs compared to scratch methods for small α. However,
Z-repart still outperforms Z-refine in such cases.

When using M-repart, migration cost increases noticeably compared to
communication cost with increasing number of partitions (processors). On
the other hand, with Z-repart, the increase in migration cost is kept small at
the expense of a modest increase in communication cost. Consequently, Z-
repart achieves a better balance between communication and migration costs;
the total cost gets relatively better compared to M-repart as the number of
partitions increases. This result shows that Z-repart is superior in minimizing
the total cost objective as well as in scalability of the solution quality compared
to M-repart.

Run times of the tested partitioners normalized by that of Z-repart while
changing the data’s structure are given in Figures 1.14–1.18. Results for
changing vertex weights and sizes are omitted here as they were similar to
the ones presented. We have observed 3 different run time profiles on our
test set. As shown in the Figure 1.14, multilevel hypergraph partitioning
based methods, Z-repart and Z-scratch, are at least as fast as their graph
partitioning based counterparts, M-repart and M-scratch, on sparse datasets
such as xyce680s. Z-refine is significantly faster than on all others in this
dataset, therefore it becomes a viable option for applications that requires
a very fast repartitioner for small α values. For 2DLipid (Figure 1.15), al-
though graph based repartitioning approach runs faster for small number of
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Fig. 1.2 Normalized total cost for xyce680s with perturbed data structure.

Fig. 1.3 Normalized total cost for xyce680s with perturbed weights.

partitions, with increasing number of processors, their execution time also
increases and becomes comparable to that of hypergraph partitioning based
repartitioning approaches. This behavior is probably due to direct k-way re-
finement strategies used in the graph partitioner. When a dense graph such
as 2DLipid is partitioned, the number of computations done by the parti-
tioner increases with increasing number of partitions, since it becomes more
likely to have an adjacent vertex on every processor. In our tests, the last
run time profile occurred in cage14, auto and apoa1-10, hence we omitted
results for auto and apoa1-10 and presented the results for largest test graph
we have, cage14, in Figure 1.16. This result shows that hypergraph parti-
tioning based repartitioning approach can be up ten times slower than graph
based approaches. Average run time results are presented in Figures 1.17 and
1.18. As seen in these figures, on the average, hypergraph partitioning based
repartitioning approaches are about 5 times slower than graph based reparti-
tioning approaches. We plan to improve run time performance by using local
heuristics in Z-repart to reduce global communication (e.g., using local IPM
instead of global IPM).
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Fig. 1.4 Normalized total cost for 2DLipid with perturbed data structure.

Fig. 1.5 Normalized total cost for 2DLipid with perturbed weights.

Fig. 1.6 Normalized total cost for auto dataset with perturbed data structure.
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Fig. 1.7 Normalized total cost for auto dataset with perturbed weights.

Fig. 1.8 Normalized total cost for apoa1-10 with perturbed data structure.

Fig. 1.9 Normalized total cost for apoa1-10 with perturbed weights.
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Fig. 1.10 Normalized total cost for cage14 with perturbed data structure.

Fig. 1.11 Normalized total cost for cage14 with perturbed weights.

Fig. 1.12 Normalized total cost for average of five test graphs with perturbed data
structure.
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Fig. 1.13 Normalized total cost for average of five test graphs with perturbed
weights.

Fig. 1.14 Normalized run time with perturbed data structure for xyce680s.

Fig. 1.15 Normalized run time with perturbed data structure for 2DLipid.
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Fig. 1.16 Normalized run time with perturbed data structure for cage14.

Fig. 1.17 Normalized run time for average of five test graphs with perturbed data
structure.

Fig. 1.18 Normalized run time for average of five test graphs with perturbed weights.
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1.6 CONCLUSION

We have presented a new approach to dynamic load balancing based on a sin-
gle hypergraph model that incorporates both communication volume in the
application and data migration cost. Our experiments, using data from a wide
range of application areas, show that our method produces partitions that give
similar or lower cost than the adaptive repartitioning scheme in ParMETIS.
Our partitioner generally required more time than ParMETIS, mostly due
to the greater richness of the hypergraph model. The full benefit of hyper-
graph partitioning is realized on unsymmetric and non-square problems that
cannot be represented easily with graph models. So that we could provide
comparisions with graph repartitioners, we restricted our tests here to square,
symmetric problems; unsymmetric and non-square problems have been stud-
ied elsewhere [7, 12]. The experiments showed that our implementation is
scalable.

Our approach uses a single user-defined parameter α to trade between
communication cost and migration cost. Experiments show that our method
works particularly well when migration cost is more important, but without
compromising quality when communication cost is more important. There-
fore, we recommend our algorithm as a universal method for dynamic load
balancing. The best choice of α will depend on the application, and can be
estimated. Reasonable values are in the range 1− 1000.

In future work, we will to test our algorithm and implementation on real
adaptive applications. We will also attempt to speed up our algorithm by
exploiting locality given by the data distribution. We believe the implemen-
tation can be made to run faster without reducing quality. However, since
the application run time is often far greater than the partitioning time, this
enhancement may not be important in practice.
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